طراحی یک سیستم توصیه گر فیلم بر روی مجموعه داده MovieLens
استفاده از سیستم های توصیه گر هر روز در حال افزایش است .دراین مقاله قصد داریم یک سیستم توصیه گر ساده بر روی مجموعه داده سایت MovieLens طراحی کنیم.
استفاده از سیستم های توصیه گر هر روز در حال افزایش است .دراین مقاله قصد داریم یک سیستم توصیه گر ساده بر روی مجموعه داده سایت MovieLens طراحی کنیم.
در این مطلب قصد داریم به زبانی ساده ماتریس درهم ریختگی یا Confusion Matrix را توضییح دهیم. یادگیری این ماتریس برای ارزیابی مدل یادگیری ماشین ضروری است.
یکی از دلهره آورترین تصمیماتی که برنامه نویسان هنگام گرفتن یک پروژه جدید می گیرند انتخاب زبان برنامه نویسی مناسب است. Python و R بدون شک در هنگام انتخاب یک زبان برنامه نویسی برای یک پروژه علم داده (Data Science …
مقایسه زبان python و R برای کار در حوزره علم داده ادامه مطلب »
کلان داده یا بیگ دیتا زمینه است که هر روز در حال افزایش است. به همین جهت دانستن مفاهیم و الزامات این حوزه ضروری بنظر می رسد. در این مقاله قصد داریم ۵ نکته مهم در زمینه بیگ دیتا را با هم بررسی کنیم.
نصب vim در ویندوز Vim یک ویرایشگر کد قدرتمند است. آنقدر قدرتمند که به صورت پیش فرض بر روی سیستم عامل های Linux و Mac نصب شده است. اما اگر از ویندوز به عنوان سیستم عامل خود استفاده می کنید …
در دنیای امروز بیشتر افراد به شبکه های اجتماعی اعتیاد پیدا کرده اند. همچنین ، می دانیم که تقریباً هر سیستمی که افراد در آن تعامل داشته باشند ، می تواند به عنوان یک شبکه اجتماعی دسته بندی شود.شبکه های …
مدل RFM یک روش محبوب و کارا برای تجزیه و تحلیل مشتریان است. در این روش از ۳ معیار اخرین خرید مشتری، تعداد دفعات خرید و مبلغ خرید استفاده می شود. با استفاده از این معیار ها مدل RFM طراحی می شود. با روش های مصور سازی داده اطلاعات بدست آمده از مدل نمایش داده می شود.
انگیزه: برای درک بهتر از Deep Learning ، تصمیم گرفتم ساخت شبکه عصبی را از ابتدا و بدون کتابخانه یادگیری عمیق مانند TensorFlow انجام دهم. به اعتقاد من درک عملکرد یک شبکه عصبی بسیار با اهمیت است. شبکه عصبی چیست؟ …
آموزش ساخت شبکه عصبی از ابتدا در پایتون بدون tensorflow ادامه مطلب »
در این پست ما در مورد چگونگی ساختن مدلهای یادگیری ماشین برای پیش بینی مقادیر مفقود شده در داده ها پرداختیم. در ابتدا ما یک مدل رگرسیون خطی آموزش داده شده بر روی ویژگی “امتیاز” برای پیش بینی قیمت نوشیدنی ساختیم. سپس ما یک مدل جنگلی تصادفی راکه بر روی ویژگی “امتیاز” و متغیرهای کیفی آموزش دادیم تا قیمت نوشیدنی را پیش بینی کنیم. ما دیدیم که مدل جنگلهای تصادفی به طور قابل توجهی از مدل مبتنی بر رگرسیون خطی بهتر است.
یکی از الگوریتم های طبقه بندی داده ها الگوریتم SVM یا ماشین برداز پشتیبان است. در این مطلب با این الگپریتم اشنا می شویم و با یک مثال عملی آن را پیاده سازی می کنیم.