راهنمای کامل مبتدی ها برای تمیز کردن و پیش پردازش دادهها
پاکسازی و پیش پرداز داده ها یکی از مهمترین بخش ها قبل از ساخت مدل می باشد و در این مقاله سعی شده تا اقدامات معمولی که بر روی داده های خام انجام میشود را توضیح دهیم .
پاکسازی و پیش پرداز داده ها یکی از مهمترین بخش ها قبل از ساخت مدل می باشد و در این مقاله سعی شده تا اقدامات معمولی که بر روی داده های خام انجام میشود را توضیح دهیم .
استفاده از سیستم های توصیه گر هر روز در حال افزایش است .دراین مقاله قصد داریم یک سیستم توصیه گر ساده بر روی مجموعه داده سایت MovieLens طراحی کنیم.
کلان داده یا بیگ دیتا زمینه است که هر روز در حال افزایش است. به همین جهت دانستن مفاهیم و الزامات این حوزه ضروری بنظر می رسد. در این مقاله قصد داریم ۵ نکته مهم در زمینه بیگ دیتا را با هم بررسی کنیم.
انتخاب ویژگی ها و کاهش ابعاد به ما این امکان را می دهد تعداد ویژگی های یک مجموعه داده را فقط با حفظ ویژگی های مهم به حداقل برسانیم. مزایای مختلفی در انجام انتخاب ویژگی و کاهش ابعاد وجود دارد که شامل تفسیرپذیری مدل، به حداقل رساندن بیش از حد مناسب و همچنین کاهش اندازه مجموعه train و در نتیجه زمان train است.
مدل RFM یک روش محبوب و کارا برای تجزیه و تحلیل مشتریان است. در این روش از ۳ معیار اخرین خرید مشتری، تعداد دفعات خرید و مبلغ خرید استفاده می شود. با استفاده از این معیار ها مدل RFM طراحی می شود. با روش های مصور سازی داده اطلاعات بدست آمده از مدل نمایش داده می شود.
در این پست ما در مورد چگونگی ساختن مدلهای یادگیری ماشین برای پیش بینی مقادیر مفقود شده در داده ها پرداختیم. در ابتدا ما یک مدل رگرسیون خطی آموزش داده شده بر روی ویژگی “امتیاز” برای پیش بینی قیمت نوشیدنی ساختیم. سپس ما یک مدل جنگلی تصادفی راکه بر روی ویژگی “امتیاز” و متغیرهای کیفی آموزش دادیم تا قیمت نوشیدنی را پیش بینی کنیم. ما دیدیم که مدل جنگلهای تصادفی به طور قابل توجهی از مدل مبتنی بر رگرسیون خطی بهتر است.
در مساله انواع داده های گم شده missing value فهمیدن نوع مفقود شدن به طور تصادفی،غیرتصادفی یا کاملا تصادفی MNAR MCAR ,MAR از دست رفته اند درحل مشکل مهم است
کاهش ابعاد یکی از مباحث زمینه ای پرکاربرد در حوزه علم داده است.
در این مقاله قصد داریم به صورت کاربدی مساله کاهش ابعاد یا (PCA) را بررسی کنیم
هسته اصلی یادگیری ماشین پردازش داده ها است. قبل از شروع کار با الگوریتم های یادگیری ماشین داده ها باید آماده شوند تا دقت و خروجی کار بالاتر رود. در این مطلب قصد داریم با یک مثال عملی پیش پردازش …
در یادگیری ماشین نمونه گیری Undersampling و نمونه گیری Oversampling دو روش هستند که با در برخورد با داده های نامتوازن به کار می روند.می توانید از کلاس اکثریت کم نمونه گیری کنید یا روی کلاس اقلیت را بیش نمونه گیری انجام دهید یا از ترکیب هر دو روش استفاده کنید